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A diffusion equation including source terms, representing randomly distributed 
sources and sinks is considered. For quasilinear growth rates the eigenvalue 
problem is equivalent to that of the quantum mechanical motion of electrons in 
random fields. Correspondingly there exist localized and extended density 
distributions dependent on the statistics of the random field and on the 
dimension of the space. Besides applications in physics (nonequilibrium 
processes in pumped disordered solid materials) a new evolution model is 
discussed which considers evolution as hill climbing in a random landscape. 

KEY WORDS: Diffusion, disordered structures; evolution; localization; random 
processes. 

1. INTRODUCTION 

The phenomenon of a cooperative action of diffusion and reaction in random 
media has applications in diverse areas and arouses much interest. Many 
interesting results have been obtained already for the case that the rates of 
reaction (or replication) are independent of the space coordinates. ~1) The 
basic equation governing reaction-diffusion problems is the following: 

~-~ n(q, t) = n(q, t) w(q I n) + O ~q2 n(q, t) (1,1) 

where n is the density of certain physical, chemical, or biological objects 
defined over the region/2 of an appropriate space of dimension d; further D 
is the constant of diffusion in that space and w the rate of reproduction of 
the objects located at the coordinate q =  {ql "'" qa}. In many cases w 
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depends on q only via the density n(q, t) itself; this leads to the usual 
reaction-diffusion problems which are well studied (see, e.g., Refs. 1 and 2). 
If however, w(qln ) is a rather complicated function of q which is due to 
randomly changing properties of the medium in which the reaction and 
diffusion processes occur, another type of mathematical problem arises. This 
problem is closely related to the quantum theory of electrons moving in 
random potentials. This is a modern field of physics which has attracted 
much interest in recent times. (3-5) If the potential is spatially random, as first 
pointed out by Anderson, (6) there are eigenstates of the Schr6dinger equation 
which are dying off away from particular regions of space. Such eigenstates 
are localized and do not conduct, whereas those with wave functions propor- 
tional t o / 2  -1/2 are extended and do conduct. There is a critical energy E c, 
called the mobility edge separating localized states from extended states. For 
the class of problems considered here, diffusion and reaction in random 
media, the concepts of localized and extended states are of much interest too, 
since for a certain class of functionals w(qln) there is a transformation of 
Eq. (1.1) in such a way that the stationary solution of (1.1) and the 
Schr6dinger equation are equivalent. This is the case for the evolution model 
we want to propose in the following. Despite the fact that the time behavior 
of both equations is quite different, many concepts and results of the 
quantum theory may be translated for use in our problem, as will be shown 
below. We are interested not only in the case of low dimension d = 1, 2, 3 
but also in diffusion processes in high dimensional spaces d>/4.  This is 
connected with our interest in some new ideas and models about evolution 
processes. ~v'8) Following these ideas evolution may be considered as a hill- 
climbing process in a random landscape. This process may formally be 
modeled by an equation of type (1.1), where q stands for a set of biological 
properties of a species and n(q, t) is the population density of this species. 
The diffusion part models biological change (mutations). In this case the q 
space, called "phenotype space" is of very high dimension. Certainly the 
representation of mutations by~Fickian diffusion is only a rough approx- 
imation, since "far mutations" are excluded in this way. However most of 
the biological mutations lead indeed to species with are "near" in respect to 
their phenotype and therefore the diffusion approximation is often used in 
genetical theories. ~ The theory given here may also be applied to ecological 
processes in real space as, e.g., the growth and migration of bacteria on a 
Petri dish covered with a nonuniform gel infected with bacteria (d = 2) or 
growth and migration processes of microorganisms in tanks without stirring 
(d = 3). Further possible applications of the equations discussed in this work 
are connected with transport processes or optical processes in active 
(pumped) disordered solid materials. One can model, e.g., by Eq. (1.1) the 
two-dimensional current distribution i(q, t) of an electrical current crossing 
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perpendicularly a thin random layer (or boundary region) between two 
conductors. In this case q are the physical space coordinates, and the source 
term i(q, t)w(q, i) describes the amplification of local currents according to 
favorable local properties. The result may be either a breakthrough at one 
place (localization of the current) or a uniform distribution (delocalized 
current). 

The problems discussed above may show that the study of diffusion and 
reaction in random media is of interest for the modeling of different physical 
and nonphysical systems. Since we are interested here in processes in high- 
dimensional phenotype spaces ( d >  3) and in processes in real physical 
spaces (d = 1, 2, 3) as well, we do not specify in the following the dimen- 
sion d. 

2. THE EVOLUTION MODEL 

In a previous paper ~7) it has been proposed to describe biological 
evolution formally as a drift process in a high-dimensional phenotype space 
nonlinearly driven by a fitness functional. The phenotype space is spanned 
by all possible combinations of phenotypic properties q = {q~ ..... qa} where 
we could, e.g., imagine that q~ fixes the height of the species, q2 its 
weight, etc. To specify a biological species one has to choose d = 10 2 ... 10 4. 
The different values of the fitness functional at different loci (i.e., for 
different species) acts as a force to change the population distribution, 
leading that way to a changed landscape and so on. Any dependence on the 
physical space variables will be omitted, i.e., we consider only homogeneous 
populations. 

Subject to such a description may be a simple ecological system, e.g., a 
homogeneous bacteria population in a tank reactor under controlled 
boundary conditions. 

The basic equation for the population density n(q, t) 

9 2 

--~ n(q, t) = n(q, t)[E(q) - F(t)] + D ~ n(q, t) (2.1) 

is a generalization of R. A. Fisher's classical population genetical model ~ 
which was extensively studied by Eigen (1~ and others for prebiotical 
models in the modified form 

d 
-~x i ( t )=  (A i - -Di )x  i + ~ (A i : x j - -A : i x i ) -F ( t ) x  i (2.2) 

J 

Here A i is the rate of correct reproduction, A:ixg are the error copies j 
produced by i, D t is the death rate, and F(t) is a dilution flux controlled by 
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the boundary conditions. In relation of (2.1) and (2.2), the discrete species 
index i is appropriately replaced by the continuous phenotype vector q and 
E(q) ~A~--D~ is the net reproduction rate. Supposing that the mutation 
rate is symmetrical, homogeneous, and of short range in the q space, it gives 
the diffusionlike expression in Eq. (2.1). In Fisher-Eigen models F(t) is 
chosen as the population average fitness 

F(t) : f E(q) n(q, t) dq/f n(q, t) dq (2.3) 

in order to keep the total occupation N=fn(q , t )dq  constant. Thus 
Eq. (2.1) is of the type (1.1) with a linear functional 

w(qln) = E(q) - N -1 f E(q') n(q', t) dq' (2.4) 

Note that in this case the interaction of the different species is modeled only 
by an overall dilution flux which correspondes to the mean field concept in 
the physics of many-body systems. The problem is that the fitness function 
E(q), which gives the "selective value" of a species with the properties q, is 
practically unknown. There are reasons to believe that E(q) has a very 
complicated structure. One is that living beings can only approach to a 
certain compromise between several physical, chemical, and biological 
requirements and conditions, to find the "fittest" is a so-called "frustrated 
problem." This was underlined by Anderson, (~1) who suggested a prebiotic 
model and argued that the valuation function is necessarily chaotically 
shaped, comparable with the multimodality of a spin glass Hamiltonian. In 
such a system many states of local stability (read: high fitness) compete, 
which can cause, following Landauer, t12) that classical maximum principles 
may fail (say the "fittest" principle of Darwin). 

To get some properties of the solution of Eq. (2.1) we shall assume that 
at least statistical properties of the function E(q) are given by a functional 
probability density P[E(q)]. It is reasonable to assume that the correlations 
in E(q) vanish for very distant points in the q space. Further we shall 
simplify the problem by treating macroscopically homogeneous random 
fields E(q). 

For the case without the diffusion part in Eq. (2.1) and a Gaussian 
distribution PIE(q)] an explicit time-dependent solution was given by 
Zeldovich. (a3) Using percolation theory he showed that with increasing time 
the population concentrates in islands where particular high values of the 
random function E(q) are realized. In the presence of diffusion, however, the 
behavior of the solution of (2.1) is more complicated, as will be shown in the 
following section. 
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3. TIME BEHAVIOR OF SOLUTIONS 

We assume that E(q) is a random function and derive some approx- 
imate expressions for the time-dependent solution n(q, t) of (2.1) by using the 
analogy to the Schr6dinger equation for an electron in a random field. To 
make this analogy explicit we use in Eq. (2.1) the transformation 

Y(q,t)=n(q,t)exp [~i'F(t')dt' ] (3.1) 

to get 

c~ty(q, t) = E(q) + D ~q2 Y(q, t) 

ey 
y(q, O) = no(q), -~q (q, t) = O, gq E c312, gt 

(3.2) 

Consequently we may write y(q, t) in the form 

y(q, t) = ~ c. exp(E. �9 t) q/~(q) (3.3) 
n 

C n ~- f dq no(q) q/.(q) ( 3 . 4 )  

where the E n and Iffn are given by the eigenvalue problem 

D c32 E(q)] gt.(q)= E. gt.(q) (3.5) 

Therefore ~u, and E n a r e  the eigenfunctions and negative eigenvalues, respec- 
tively, of a stationary Schr6dinger equation of a particle of mass 

h 2 

m = 2D (3.6) 

in a potential 

u(q)=-E(q)  (3.7) 

For the continuous part of the spectrum the sum in Eq. (3.3) has to be 
replaced by an integral. Note that y(q, t) in Eq. (3.2) is a probability 
distribution and not a quantum mechanical wave function. The main 
following differences to ordinary quantum mechanics are y(q, t)>~ 0 gq gt 
and linear averages, calculated with y(q, t) alone (not with y*  �9 y). 
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Inserting (3.3) into (3.1), integrating over q, and using (2.3) we get 

= f dq no(q) N 

a n = f dq ~,,(q) 

and therefore 

n(q, t) = N y~" c"ee"'t~n(q) 
Y~n CneE"'tan (3.8) 

Equation (3.8) represents the solution of (2.1) by the eigenfunctions and 
eigenvalues of the equivalent Schr6dinger problem (3.5)-(3.7). For various 
random field models with different statistics for E(q) this problem was inten- 
sively investigated in the last years. ~3-5) In particular a basic result proved by 
Pastur (3'4) is that for a given statistics of E(q) all the realization of E(q) 
generate the same spectrum of eigenvalues E n with probability 1. Hence for 
given statistics of E(q) definite conclusions concerning the energy spectrum, 
i.e., the density of states, and other self-averaging quantities are possible. (3-5) 
Another important point concerns the very nature of the states ~un(q ) entering 
the right-hand side of (3.3), i.e., the question whether these states are 
localized or extended. From (3.5)-(3.7) it is immediately clear that this is 
the problem of Anderson localization of a particle in a random potential 
U(q) = --E(q) (considered by Anderson in case of a lattice Hamiltonian~6)). 
In the last years the scaling theory of localization has added much to our 
understanding of localization in random potentials. (14) For space dimensions 
d >/3 the existence of a mobility edge separating extended from localized 
states is now certain. However the dependence of the transition from 
extended to localized states from other parameters of the problem such as the 
strength of the random field and its correlation length seems to be still an 
open problem. This dependence must obviously be connected with the space 
dimension, e.g., it is well known that the white noise limit (vanishing 
correlation length) must be taken with special care when treating fluctuation 
states produced by the random field for space dimensions d>~ 4. (3'15) Here 
we shall assume the existence of localized states in the eigenvalue problem 
set by Eq. (3.5). As will be seen the existence of localized states is important 
for the long-time behavior of the solution of (2.1). 

We consider two approximate solutions of Eq. (2.1). The first approx- 
imation is a short time expansion based on a semiclassical calculation of the 
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Green's function equivalent to (3.5). This approximation is particularity 
useful for a smooth random relief E(q) or equivalently small diffusion. For 
D -~ 0 we obtain the result of Zeldovich ~3) from this solution. 

The second approximation is derived from (3.8) for the long-time 
behavior by using approximative expressions for the localized states. 

3.1.  Smooth Variations of E(q) 
Here we assume that E(q) is a slowly varying function and the solution 

of (3.2) can be calculated by an expansion of derivatives of E(q) and powers 
of D of rising order. This is equivalent to the semiclassical expansion in 
rising powers of h 2 in the corresponding quantum problem. ~) In this case it 
is convenient to start with the Green's function equivalent to (3.2), (3.5). 
Using the initial condition 

no(q ) = U .  c~(q -- q') 
we get 

[ p -- D ~-~-fq2 -- E(q) l G(q, q' ; p ) = N . ~(q -- q' ) (3.9) 

where G(q, q'; p) is the Laplace transform of the Green's function. With the 
Fourier representation of the ~ function in the right-hand side of Eq. (3.9) 
one obtains 

N 1 
G(q, q'; p) -- (2~) a f dak e ik(q-q') (3.10) 

p - D(a2 /Oq  2) - E ( q )  

In the zeroth order of the expansion we neglect the derivatives of E(q) 
altogether and find 

N 1 
G~ - (Dr) d f dak e ik<q q') (3.11) p + Dk 2 - E(q) 

Now the Laplace transform is easily reversed and the k integral done. One 
obtains 

G~O)(q,q,;t) : N [t" E(q) ( q 4  q~)2 (47rDt)a/2 exp - - -  ] (3.12) 

According to (3.1) the corresponding expression for n(~ t) is 

n~O,(q,t)=exp lfi [E(q)_F(t , ) ]d t ,  l N (4:z Dt)d/2 exp[-(q_qZ)2]4Dt 

(3.13) 
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The role of the two factors in the right-hand side of Eq. (3.13) is obvious. 
The first factor exponentially increases (decreases) for space regions where 
E(q) is greater (smaller) than the mean value F(t). The second factor 
describes ordinary diffusion from the initial value q' into space regions q. 
The combined effect of both factors results in a shift of n(q, t) to regions 
with high-valued E(q). An improvement of (3.13) is easily performed along 
the lines of the semiclassical approximation (Appendix XII of Ref. 5). 
Keeping terms up to the second derivatives in E(q) one obtains 

N 
(4~r Dt) ~/2 

I 21 •  t . E(q) + ~ D ~q2 E(q) + ~- D E(q)) 

• exp 1 Iq-q' + t2( / q)E(q)12 I - 4Dt (3.14) 

G(l)(q, q'; t) - 

In the next orders terms with higher powers in t will appear which become 
significant with increasing time. Hence (3.14) represents a short time 
expansion. The time region of validity of (3.10) is however the larger the 
smaller the derivatives of E(q) or equivalently the diffusion coefficient D are. 
For D ~ 0 and a homogeneous initial condition n(q, t = O) = n o the result of 
Zeldovich ~13) is easily obtained. Indeed, from (3.13) we get for a 
homogeneous initial distribution 

n(~ lfi [E(q)--F(t')]dt' i (3.15) 

Now F(t) introduced by (2.3) insures a constant total occupation, 
f n(~ t)dq =N. Hence integration of Eq. (3.15) over q yields 

exp [fl F(t') dt' J = l  f dq exp[E(q) . t ] (3.16) 

The right-hand side of Eq. (3.16) is a spatial average which is equivalent to 
the ensemble average performed with the distribution PIE(q)] of E(q). 
Assuming Gaussian statistics for P[E(q)] with a zero mean value ( E ) =  0, 
one obtains from (3.16) 

F(t) = (EZ) �9 t (3.17) 

where (E 2) is the mean square of E(q). Inserting (3.17) into (3.15) the 
solution given in Ref. 13 results. 
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3.2.  Evolutionary Hopping 

Now we consider the evolution of n(q, t) after that part of n(q, t) 
connected with the extended states has relaxed out and the localized states 
dominate in (3.8). Such a time region is always reached (if localized states 
exist) because in the present problem the E n are the negative eigenvalues of 
the corresponding Schr6dinger problem, see (3.7). Hence the eigenvalues E," 
of the localized solution of (3.5) are higher than the eigenvalues of the 
extended states and the contribution of the latter becomes negligible in the 
sums in (3.8) after some time. Note that for d >/4 the field E(q) has to be 
not 3 correlated to ensure the existence of localized states. ~5) Otherwise the 
spectrum is purely continuous and there is no concentration of the 
distribution in the long time region but a diffusion-like spreading takes place. 

We assume exponentially localized states characterized by a 
localization center q," and the localization length l(En), i.e., the asymptotic 
dependence of gt(q) is 

~,, '(q)~exp [ ]q--q"] ~ ( ~  ] (3.18) 

The localization length l is generally a function of the eigenvalue E,'. The 
selection processes are described by the falling into the "ground state" of a 
local maximum of E(q) (establishing local equilibrium), whereas the 
diffusion appears as tunneling to other local maxima of E(q) (see Fig. 1). 
This is schematically shown in Fig. 2. 

Now it is interesting to consider which states effectively contribute to 
the sum in Eqs. (3.3), (3.8). Taking once more the initial condition no(q)= 
N .  6(q - q'), i.e., c, = qJ,'(q') we get from (3.3) 

I 1 I y(q,q';t)=~_exp," l(E,~[Iq--q, ' l+lq'--q, ' l l+t.E," (3.19) 

and from (3.1) 

1 n(q,q'; t)= ~ e x p  l J  dt'(En--F(t')) 
. ~ o  l ( E , ' )  [Iq-q, ' l+lq'-q, '[] I 

For small times the time dependent integral in Eq. (3.20) is negligible and 
the coordinate dependent part dominates. Hence the states effectively present 
are states nearby q', for which Iq'-q, 'l  ~ Iq -  q,'l ~ l(E,'). For intermediate 
times the time dependent integral is a fastly rising function for terms 
corresponding to states with the largest E n. However the factor [I(E,')]-I in 

(3.2o) 
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Fig. 1. Numerical solution of Eq. (3.2) for a simple double-welt shape of the function E(q). 
Initial condition no(q) = qJ0 + 0.0001 �9 ~'2 time units r = (E 0 - E2)- ~ [cf. Eq. (3.8)I. 

.(~0} / t-o 

Fig. 2. 

A 
�9 7 -  ~ I =  

Schematic picture of the evolution according to Eq. (3.8): Falling into the local 
ground state (establishing local equilibrium) at t I followed by a "tunneling" to the next higher 
maximum of E(q) at t 2. 
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the coordinate dependent part  will also be large for such states and a 
competi t ion of these two tendencies takes place. As a result, states with 
lower values of  E ,  are left and those with higher ones are entered up to the 
final t ime region discussed above. The competi t ion between time and coor- 
dinate dependent part  in Eq. (3.20) makes it difficult to decide wether the 
transition from the initial state to the final one is a rather direct process or if 
there are a lot of  intermediate states involved. This can be clarified in the 
following way. F rom (3.18) it is clear that only a few of the cn's will be of  
order unity. We define 

E o = max E n 
n~Cn~l 

as the max imum among the eigenvalues corresponding to an eigenfunction 
with c n ,,~ 1. The majori ty  of  the c~'s will be exponentially small, since 
Iq. - q'l  >> l(g~). With (3.18) we have approximately  

[Iq  1 - -  -~ exp (3.21) 
c o I(E~) 

where we have chosen q0 as origin of  our coordinate system. So for small 
time n(q, t) is dominated by ~'0. At the time 

ln(e0/e,) 
t n  - -  (3.22) 

(E,, --Eo) 
we get 

Co eE~ = c~e E"'tn (3.23) 

i.e., n(q, t) is no longer dominated by ~'0 alone and there is a transition into 
other space regions (see Fig. 1). F rom (3.21) and (3.22) results 

Iq.I (3.24) 
t n = l(En)(En - Eo) 

We try to find the mean transition time { for such a transition into other 
space regions. 

Because E(q)  is macroscopical ly  homogeneous the probabil i ty of  
finding the localization center qi of  a function ~i corresponding to an eigen- 
value out of  the interval (E, E + dE) in the d-dimensional sphere with radius 
r is 

w(e, r) dE dr = p(E) dE Sdr  a 1 dr 

2~d/2 (3.25) 
S d - - - -  

r ( d / 2 )  

p(E) = lim 1 w ~  -V- cS(E -- E , )  (3.26) 
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is the density of states of the operator on the left-hand side of Eq. (3.5) and 
p(E)dE gives therefore the number of eigenvalues out of the interval 
(E,E+dE) per unit volume. In Eq. (3.25) we have neglected possible 
correlations between the states. 

From (3.25) and (3.24) we get 

w(E, t) dE dt = p(E) dE Sd[I(E)(E - Eo)] d t a 1 dt (3.27) 

as probability for a transition in the time interval (t, t + dt) to a state with 
eigenvalue out of (E, E + dE). Hence 

w(t) dt = [ S a ~o [ l(E)(E - Eo) ]a p(E) dE l ta- l dt (3.28) 

gives the probability for a transition during (t, t + dt) to any other state. 
Using the abbreviation 

K d = SalVo [ l (e)(e  -- E0)]" p(e) dE 

we get for the probability density P(t) of the time of first escape: 

P(t)= (l - fl P(t ')dt ')  Kata-1 

"[ I [ dt [Kat a-~ J = --P(t) = --Kat a 1 [Kata-l J (3.29) 

P(t)= Ka . ta-l exp ( - ~  Kdta) 

For { we find 

[= ~? t  . P(t) d t=F  ( ~ - )  [ Sa d 2E0 ['(E)(E-E~ l -1/a 

(3.30) 

Usually p(E) falls off exponentially for great E so K a < oo and { > 0. Putting 
p(E) =/7(E. ) .  f i ( E - E n )  in (3.30) we get for the mean transition time to a 
state with eigenvalue E.: 

_ F[(d+l)/d] [ d ]l/a 
tE"= I~-~E--,--~E0)" Sd . / i (E~) (3.31) 

Consequently te is for great E a monotonically increasing function of E, i.e., 
transitions to states with smaller eigenvalues will be on the whole quicker 
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then those to states with higher ones, because their mean distance to q0 is 
sufficiently shorter. So the evolution from the initial state to the final one will 
be a stepwise rather than a straight process. This is of special interest in 
sight of frustrated valuation functions, ~11'12) because then there are many 
states with practically the same maximum E(q), but located relatively far 
from each other. Then the transition probability is dominated by these 
distances instead of the E(q) value. Especially in a high-dimensional space 
there is a large number of neighboring states with the same "attractiveness," 
and for a sample process the decision between them depends sensitively on 
random influences. Then the evolution turns out to be a random walk rather 
than a directed process (sometimes called non-Darwinian evolution). 

Note also that from (3.31) follows t e ~  ~ if E-~E o. Therefore tE(E ) 
has a minimum at some value Emi n (see Fig. 3) and the evolution process 
will consist of successive small jumps in the phenotype space connected with 
an average fitness increase of 6E = E m i  n - E  0. This is pictured in Fig. 4. 
Taking into account the correlations of the different states v/i in (3.25) makes 
this feature even more distinct. <16) 

In most cases p(E) is a very complicated function. But if we start with a 
sufficiently high developed master species v/0 (i.e., E 0 >> (E2)), we may use 
asymptotic formulaes for p(E) which are known for a wide class of random 
potentials.~16'3) 

Fig. 3. 

t 
I 

I 

o 

Qualitative plot of the mean transition time [E from a state with fitness eigenvalue E 0 
to another one with eigenvalue E as function of E. 
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,-_5 
•ct ) 

S 

Fig. 4. Possible evolution pathway in a two-dimensional phenotype space and associated 
increase of the population average fitness F(t) with time. 

As an simple example we consider here a Gaussian ensemble 

1 
P[E(q)]= ~ e x p  [ 1 f f  dq dq' E(q)A(q, q')E(q') j  

with zero mean value (E(q))= 0 and the correlation function 

B(q - q') = (E(q) E(q')) 

given by 

f B(q -- q')A(q' -- q") dq' = ~(q - q " )  

The asymptotic form of p(E) is (a6'3) 

p ( E ) -  exp (-- ~-~-) (3.32) 

B = B(0) 

Furthermore for E 2 >> B we have (5) 

Inserting (3.32) and (3.33) into (3.30) we find for E~ >> B �9 d 

f = const �9 F 
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Equation (3.34) gives the explicit dependence of i on the parameters of the 
problem. Note that the curves f(D, d) = const in the D - d  plane are given by 
D a = const and that in the "white noise limit" B ~ oo we get f ~  0. 

4. DISCUSSION 

Let us discuss the main results of this paper in connection with the 
model of biological evolution introduced in Section 2. Similar conclusions of 
course hold for other physical and chemical examples. In the evolution 
model the vector q E R  a denotes a biological species by fixing all its 
phenotypical properties qi, i =  1 ... d. (d>> 10). The model appears as a 
continuous generalization of the well-known Fisher-Eigen equation, where 
mutation is modeled by the diffusion term. (7~ The fitness E(q) of the species 
q as function of the phenotypic properties qi forms a random landscape, its 
detailed shape is unknown. Assuming it to be a random field and following 
the lines of this paper we find that the interaction of selection and diffusion 
enables the system to reach the most favorable regions of the q space, where 
the fitness E(q) exhibits its greatest maxima (Darwin's principle). So the 
evolution process reminds hill-climbing in the fitness landscape E(q). For 
small times this causes the development of an island structure in the 
phenotyp space, that means only certain combinations of the phenotypic 
properties represent viable organisms. Such combinations define a biological 
species. In the long-time region the hill-climbing proceeds via small but 
discrete steps (see Fig. 4). The quickest and therefore mostly realized tran- 
sitions from an initial state with fitness E 0 occur to states with fitness eigen- 
values E = E 0 + ~E, ~E > 0. That such a discontinuous character is found in 
a model where the phenotypic properties are allowed to change continuously 
may serve as indication, that the stepwise character of evolution as observed 
in nature is not a direct consequence of the discretness of mutations but a 
rather general feature of selection-diffusion processes. 

Note that these statements are only true if the field E(q) admits the 
existence of localized states, i.e., if E(q) is not ~ correlated (d/> 4 is surely 
satisfied). Otherwise the spectrum of the operator in Eq. (3.5) will be purely 
continuous and a diffusion-like spreading of the initial distribution takes 
place. The necessity of a smooth landscape was first pointed out by 
Conrad. (I8) It can be understood as premise to the development of a strategy 
by the system. The special role of the c~ correlated field is connected with our 
diffusion approximation of the mutation process. Usually the mutation 
mechanism will set a length scale l m and the discussed spreading of the 
distribution will occur in high dimensions whenever the correlation length of 
E(q) is less than lm. The diffusion approximation implies I m ~ 0 and thus 
these effects can only be observed if the correlation length vanishes too. 
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Therefore several interesting features of  evolution processes can be 
understood using the model  of  a random field for E(q). Fur thermore  charac-  
teristic parameters  of  the processes are completely determined by the 
statist ical  propert ies  of  this field alone. This is an essential point  because for 
any real biological  system the function E(q) is prac t ica l ly  not  measurable  
and we may  get at most  some quali tat ive information about  its shape. In this 
sense it is natural  to assume that  E(q) is a random landscape and to relate 
its stat ist ical  and correlat ion propert ies to the character is t ics  of  the evolution 
process like the velocity of  phenotypica l  change, the dispersion of  the gene 
pool  of a species, etc. As we demonstra ted,  there is an interesting analogy in 
modeling of  evolution processes on the one hand and disordered solid states 
on the other, which may support  the further investigation in this field of  
biophysics.  
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